образованием какого продукта завершается общая стадия процессов брожения и дыхания

Обмен веществ и превращение энергии – свойства живых организмов. Энергетический обмен и пластический обмен, их взаимосвязь. Стадии энергетического обмена. Брожение и дыхание

Содержание:

Обмен веществ и превращение энергии – свойства живых организмов

Обмен веществ является комплексом различных химических преобразований, способствующих сохранению и самовоспроизведению биоструктур.

67228de3c762a7277835b351b42f1e699315e928

Он заключается в поступлении веществ в организм во время питания и дыхания, метаболизме внутри клетки или обмене веществ, вдобавок, в высвобождении конечных продуктов метаболизма.

Метаболизм неотрывно соединён с процессами преобразований определённых видов энергии в другие. К примеру, в начале процесса фотосинтеза световая энергия скапливается в виде энергии химических связей сложных органических молекул, в процессе же дыхания она освобождается и применяется для синтезирования новых молекул, механические и осмотические работы, рассеянные в виде тепла и т. д.

Поток химических превращений в живых организмах снабжается биологическими катализаторами белковой специфики — ферментами или энзимами. Наряду с остальными катализаторами, энзимы ускоряют течение химических реакций в клетке до нескольких сотен тысяч раз, при этом они не меняют природу или свойства конечных продуктов клетки. Ферменты представляют собой простые или сложные белковые молекулы, которые, помимо части, состоящей из белка, включают небелковый кофактор, по – другому называемый коферментом. Ферментами являются, например: амилаза слюны, которая расщепляет гликаны при длительном жевании и пепсин, который обеспечивает переваривание белков в желудочно-кишечном тракте.

Механизм действия ферментов заключается в том, чтобы снизить энергию активации веществ (субстратов), которые вступают в реакцию вследствие образования промежуточных фермент-субстратных комплексов.

414c61d94a245f27881f5f08d98056e9e7a43997

Энергетический и пластический обмен, их взаимосвязь

Метаболизм процессуально слагается из двух частей, происходящих в клетке в одно и то же время: пластического и энергетического обмена.

Пластический метаболизм (анаболизм, ассимиляция) является совокупностью реакций синтеза, сопровождающихся расходом энергии аденозинтрифосфата. Пластический обмен особенно важен тем, что в результате него синтезируются органические вещества, играющие важную роль в жизнедеятельности клетки. Реакциями данного обмена являются, например, процесс фотосинтеза, биологический синтез белковых молекул и репликация молекул ДНК (самодублирование).

Энергетический обмен (катаболизм, диссимиляция) являет собой сочетание реакций разложения сложных веществ на более простые. Результатом данного обмена является накапливание энергии в форме АТФ. Важнейшими процессами энергетического обмена являются дыхание и брожение.

Пластический и энергетический обмены прочно коррелируют между собой, в связи с тем, что синтез органических веществ происходит в процессе пластического обмена, а для этого нужна именно энергия АТФ; в процессе обмена энергии органические вещества разлагаются, и высвобождается АТФ, а затем используется для синтеза.

Получение энергии организмами осуществляется в процессе питания, затем высвобождают ее и переводят в форму, доступную главным образом в процессе дыхания. По способу питания все организмы подразделяются на автотрофные и гетеротрофные. Автотрофы способны к самостоятельному синтезу органических веществ из неорганических, а гетеротрофные организмы поглощают уже готовые органические вещества.

Ассимиляция — биосинтез макромолекул, свойственных клеткам организма. Растения и многие бактерии могут создавать молекулы глюкозы из углекислого газа и воды. На этот процесс расходуется и запасается энергия. Животным необходимы готовые молекулы белков, жиров и углеводов (БЖУ). Это важнейший строительный и энергетический материал для клеток.

Ассимиляция — это совокупность процессов создания структур организма с накоплением энергии.

Чтобы организм мог усвоить вещества из пищи, они должны быть сначала разобраны на «кирпичики» или мономеры. Из них в организме «собираются» собственные макромолекулы.

Диссимиляция — распад веществ, противоположный ассимиляции (биосинтезу). Белки гидролизуются до аминокислот. При распаде жиров выделяются жирные кислоты и глицерин. Сложные углеводы разлагаются на простые сахара.

Ассимиляция и диссимиляция происходят согласованно. Распад и окисление веществ с выделением энергии возможны лишь тогда, когда есть субстрат — макромолекулы. Они разлагаются на мономеры, которые участвуют в биосинтезе. Выделяющаяся при диссимиляции энергия затрачивается на образование свойственных организму веществ.

Стадии энергетического обмена

Несмотря на сложность реакций обмена энергии, он разделяется на три фазы:

edefa77deb212a543f8a2384d7a7e8eec68bace7

На подготовительном этапе происходит разложение молекул гликанов, липидов, белков, нуклеиновых кислот на более простые, к примеру, на глюкозу, глицерин и жирные кислоты, аминокислоты, нуклеотиды. Эта фаза может осуществляться непосредственно в клетках или в кишечнике, откуда эти вещества переносятся кровотоком.

В анаэробной фазе энергетического катаболизма в дальнейшем происходит расщепление мономеров органических соединений до более простых промежуточных соединений, к примеру, пировиноградной кислоты или пирувата. Он не нуждается в присутствии кислорода, и для организмов, живущих в болотном иле, это единственный способ получить энергию. Анаэробная фаза энергетического обмена проходит в цитоплазме.

Некоторые вещества подвергаются бескислородному расщеплению, при этом глюкоза, чаще всего, остается основным субстратом реакций. Процесс его свободного от кислорода распада принято называть гликолизом. Вследствие гликолиза, молекула глюкозы теряет четыре атома водорода, то есть она окисляется, и образуются две молекулы пировиноградной кислоты, две молекулы АТФ и две молекулы переносчика водорода, восстановленного НАДH + H + :

Образование АТФ из АДФ осуществляется за счет прямого переноса фосфат-аниона из предварительно фосфорилированного сахара и называется субстратным фосфорилированием.

Аэробная фаза энергетического катаболизма может происходить только в присутствии кислорода, тогда как промежуточные продукты, образующиеся при бескислородном разложении, окисляются до конечных продуктов (углекислого газа и воды), и большая часть энергии, хранящейся в химических связях органических соединений, высвобождается. В молекулу АТФ входит 36 макроэргических связей. Эта стадия имеет такое название, как тканевое дыхание. Когда кислород отсутствует, происходит преобразование промежуточных продуктов обмена веществ в определённые органические вещества, данный процесс принято называть ферментацией или брожением.

Брожение и дыхание

Брожение и дыхание это две различные формы диссимиляции — разложения веществ в организме для получения энергии.

Брожение

Примеры процессов брожения известны из повседневной жизни, производственной деятельности.

Во всех случаях брожения микроорганизмы изменяют углеводы и производят макроэнергетическое вещество — АТФ. Для этого процесса не требуется кислород, что является важнейшим отличием от дыхания. Общий признак — химическая энергия связей в молекуле глюкозы преобразуется в энергию в форме АТФ, которая используется для жизненных процессов.

Брожение — древнейший и не самый совершенный способ выработки энергии. Из одной молекулы глюкозы образуется 2 молекулы АТФ. Кислородный процесс более эффективен в плане получения энергии.

Организмы, которым необходим кислород для дыхания, являются аэробами (в переводе с греческого «аэр» — воздух). Внешняя сторона процесса заключается в поглощении кислорода из воздуха и выделении диоксида углерода.

Молекулы О2 попадают в организм насекомых через трахеи. Для рыб характерно жаберное дыхание, для млекопитающих — легочное. Переносят кислород к органам и транспортируют диоксид углерода красные кровяные клетки, содержащие гемоглобин.

Читайте также:  062 это какой оператор

При отсутствии кислорода начинает происходить ферментация. Ферментация является эволюционно более ранним способом генерирования энергии, чем дыхание, но она менее энергетически выгодна, потому что ферментация производит органическое вещество, которое все еще богато энергией. Различают несколько основных видов брожения: уксусно – кислое, спиртовое, маслянокислое, молочнокислое, метановое и др.

Стало быть, в скелетных мышцах в отсутствие кислорода во время ферментации пировиноградная кислота восстанавливается до молочной кислоты, тогда как ранее образованные восстановительные эквиваленты расходуются, и остаются только две молекулы АТФ:

При ферментации с дрожжами пировиноградная кислота в присутствии кислорода преобразуется в этиловый спирт и окись углерода (IV):

Во время ферментации с использованием микроорганизмов пируват также может образовывать уксусную, масляную, муравьиную кислоты и так далее.

Энергия АТФ, которая образуется вследствие энергетического обмена, используется клеткой на различные виды работ:

Дыхание

Кислородное дыхание производится в митохондриях, где пировиноградная кислота вначале теряет один атом углерода, что сопровождается синтезом одного восстанавливающего эквивалента молекул НАДН + Н + и ацетилкофермента A (ацетил-КоА):

Ацетил-КоА в митохондриальном матриксе участвует в цепочке химических превращений, которые в совокупности называются циклом Кребса (цикл трикарбоновых кислот, цикл лимонной кислоты). Во время этих превращений образуются две молекулы АТФ, ацетил-КоА полностью окисляется до диоксида углерода, а его ионы водорода и электроны присоединяются к водородным векторам НАДН + Н + и НАДH2. Носители переносят протоны и электроны водорода во внутренние митохондриальные мембраны, которые образуют гребни. При помощи белков-носителей протоны водорода вводятся в межмембранное пространство, а электроны переносятся через, так называемую, дыхательную цепь энзимов, которые расположены во внутренней митохондриальной мембране, и разряжаются в атомы кислорода:

Важно то, что в дыхательной цепи имеются белки, содержащие железо и серу.

Протоны водорода переносятся из межмембранного пространства в митохондриальный матрикс благодаря специальным ферментам, АТФ-синтетаз, а энергия, выделенная в результате этого процесса, используется для синтеза 34 молекул АТФ из каждой молекулы глюкозы. Этот процесс называется окислительным фосфорилированием. В митохондриальной матрице протоны водорода, прореагировавшие с радикалами кислорода с образованием воды:

Набор кислородных дыхательных реакций можно выразить таким уравнением:

Общее уравнение дыхания выглядит следующим образом:

Таким образом, клеточное дыхание в организме человека происходит поэтапно. Гликолиз сопровождается образованием 8 молекул АТФ (2 из них расходуются). Окислительное декарбоксилирование «дает» 6 АТФ, цикл Кребса — 24 АТФ. Итого, разложение молекулы глюкозы приводит к созданию 38 молекул АТФ. Аэробное дыхание — более совершенный способ получения и накопления энергии.

Источник

Образованием какого продукта завершается общая стадия процессов брожения и дыхания

Раздел ЕГЭ: 2.5. Обмен веществ и превращения энергии — свойства живых организмов. Энергетический обмен и пластический обмен, их взаимосвязь. Стадии энергетического обмена. Брожение и дыхание. Фотосинтез, его значение, космическая роль. Фазы фотосинтеза. Световые и темновые реакции фотосинтеза, их взаимосвязь. Хемосинтез. Роль хемосинтезирующих бактерий на Земле.

Несмотря на всю сложность реакций энергетического обмена, его условно подразделяют на три этапа: подготовительный, анаэробный (бескислородный) и аэробный (кислородный).

На подготовительном этапе молекулы полисахаридов, липидов, белков, нуклеиновых кислот распадаются на более простые, например глюкозу, глицерин и жирные кислоты, аминокислоты, нуклеотиды и др. Этот этап может протекать непосредственно в клетках либо в кишечнике, откуда расщепленные вещества доставляются с током крови.

Анаэробный этап энергетического обмена сопровождается дальнейшим расщеплением мономеров органических соединений до еще более простых промежуточных продуктов, например пировиноградной кислоты, или пирувата. Он не требует присутствия кислорода, и протекает в цитоплазме.

Бескислородному расщеплению могут подвергаться различные вещества, однако довольно часто субстратом реакций оказывается глюкоза. Процесс ее бескислородного расщепления называется гликолизом. При гликолизе молекула глюкозы теряет четыре атома водорода, то есть окисляется, при этом образуются две молекулы пировиноградной кислоты, две молекулы АТФ и две молекулы восстановленного переносчика водорода НАДН + Н + :

2019 01 19 19 41 59

Аэробный этап энергетического обмена может происходить только в присутствии кислорода, при этом промежуточные соединения, образовавшиеся в процессе бескислородного расщепления, окисляются до конечных продуктов (углекислого газа и воды) и выделяется большая часть энергии, запасенной в химических связях органических соединений. Она переходит в энергию макроэргических связей 36 молекул АТФ. Этот этап также называется тканевым дыханием. В случае отсутствия кислорода промежуточные соединения превращаются в другие органические вещества, и этот процесс называется брожением.

Дыхание

Аэробное дыхание происходит в митохондриях, при этом пировиноградная кислота сначала утрачивает один атом углерода, что сопровождается синтезом одного восстановительного эквивалента НАДН + Н + и молекулы ацетилкофермента А (ацетил-КоА):

2019 01 19 19 45 08

Ацетил-КоА в матриксе митохондрий вовлекается в цепь химических реакций, совокупность которых называется циклом Кребса. В ходе этих превращений образуется две молекулы АТФ, ацетил-КоА полностью окисляется до углекислого газа, а его ионы водорода и электроны присоединяются к переносчикам водорода НАДН + Н + и ФАДН2. Переносчики транспортируют протоны водорода и электроны к внутренним мембранам митохондрий, образующим кристы. При помощи белков-переносчиков протоны водорода нагнетаются в межмембранное пространство, а электроны передаются по так называемой дыхательной цепи ферментов, расположенной на внутренней мембране митохондрий, и сбрасываются на атомы кислорода:

2019 01 19 19 46 20

Следует отметить, что некоторые белки дыхательной цепи содержат железо и серу.

Из межмембранного пространства протоны водорода транспортируются обратно в матрикс митохондрий с помощью специальных ферментов — АТФ-синтаз, а выделяющаяся при этом энергия расходуется на синтез 34 молекул АТФ из каждой молекулы глюкозы. Этот процесс называется окислительным фосфорилированием. В матриксе митохондрий протоны водорода реагируют с радикалами кислорода с образованием воды:

2019 01 19 19 47 27

Совокупность реакций кислородного этапа дыхания может быть выражена следующим образом:

2019 01 19 19 47 41

Суммарное уравнение дыхания выглядит таким образом:

2019 01 19 19 47 52

Брожение

В отсутствие кислорода или при его недостатке происходит брожение. Брожение является эволюционно более ранним способом получения энергии, чем дыхание, однако оно энергетически менее выгодно, поскольку в результате брожения образуются все еще богатые энергией органические вещества. Различают несколько основных видов брожения: молочнокислое, спиртовое, уксуснокислое и др. Так, в скелетных мышцах в отсутствие кислорода в ходе брожения пировиноградная кислота восстанавливается до молочной кислоты, при этом образовавшиеся ранее восстановительные эквиваленты расходуются и остается всего две молекулы АТФ:

2019 01 19 19 54 36

При брожении с помощью дрожжевых грибов пировиноградная кислота в присутствии кислорода превращается в этиловый спирт и оксид углерода (IV):

2019 01 19 19 54 47

При брожении с помощью микроорганизмов из пировиноградной кислоты могут образоваться также уксусная, масляная, муравьиная кислоты и др.

Это конспект для 10-11 классов по теме «Стадии энергетического обмена. Брожение и дыхание».
Читайте также другие конспекты, относящиеся к разделу ЕГЭ 2.5:

Источник

Брожение

18.05.2021, 16:07 Бактерии
Автор: Дарья Куликова

Proczess brozheniya

Содержание статьи:

Признаки брожения

брожение Брожение – одна из основных форм катаболизма, представляющая собой окислитель. характеризуются следующими параметрами:

Стадии брожения

Схематично брожение Брожение – одна из основных форм катаболизма, представляющая собой окислитель. представляется в двух стадиях.

Первая стадия – это превращение глюкозы в пируват (пировиноградную кислоту). Эта стадия включает разрыв углеродной цепи глюкозы с одновременным отщеплением двух пар атомов водорода. Она составляет окислительную часть брожения Брожение – одна из основных форм катаболизма, представляющая собой окислитель. и может быть схематично изображена следующим образом:

[4H] – водород, принимаемый акцептором.

Вторая стадия брожения Брожение – одна из основных форм катаболизма, представляющая собой окислитель. – восстановительная. В процессе данной стадии атомы водорода используются для восстановления пировиноградной кислоты или образованных из нее соединений. При различных типах брожений Брожение – одна из основных форм катаболизма, представляющая собой окислитель. вторая стадия протекает специфическим для данного типа образом.

Читайте также:  в каких калибрах выпускается мр 121 лис

Пути образования пирувата из углеводорода

У микробов известно три пути образования пирувата из углеводородов:

Типы брожения

Молочно-кислое брожение Брожение – одна из основных форм катаболизма, представляющая собой окислитель. – превращение молочно-кислыми бактериями Бактерии объединены в царство Eubacteria или Bacteria. Царство делят на несколько типов: Гр. сахара в молочную кислоту. Наряду основным продуктом в большем или меньшем количестве есть и побочные продукты.

Пропионово-кислое брожение Брожение – одна из основных форм катаболизма, представляющая собой окислитель. процесс превращения сахара или молочной кислоты и ее солей в пропионовую и уксусную кислоты с выделением воды и углекислого газа. Некоторые пропионово-кислые бактерии способны образовывать и другие кислоты (муравьиную, янтарную). Данный тип брожения Брожение – одна из основных форм катаболизма, представляющая собой окислитель. является одним из важных процессов при созревании сычужных сыров. Кроме того, пропионовая кислота и ее соли являются ингибиторами мицелиальных грибов и используются для предотвращения плесневения семян и других продуктов.

Масляно-кислое брожение Брожение – одна из основных форм катаболизма, представляющая собой окислитель. сложный процесс превращения сахара в анаэробных условиях масляно-кислыми бактериями с образованием масляной кислоты, углекислоты и водорода. Побочные продукты масляно-кислого брожения Брожение – одна из основных форм катаболизма, представляющая собой окислитель. : бутиловый спирт, ацетон, этиловый спирт, уксусная кислота. Масляно-кислые бактерии широко распространены в природе. Встречаются они в илистых отложениях водоемов, в скоплениях разлагающихся растительных остатков, в различных пищевых продуктах.

Источник

Брожение и дыхание растений. Субстраты и пути дыхания растений

» data-shape=»round» data-use-links data-color-scheme=»normal» data-direction=»horizontal» data-services=»messenger,vkontakte,facebook,odnoklassniki,telegram,twitter,viber,whatsapp,moimir,lj,blogger»>

Брожение и дыхание растений

БРОЖЕНИЕ И ДЫХАНИЕ РАСТЕНИЙ

6.1. Брожение

Первый этап, то есть гликолиз, одинаков при брожении и дыхании. Поворотным моментом является образование пировиноградной кислоты. Впервые Л. Пастер показал, что в присутствии кислорода брожение у дрожжей заменяется дыханием. Дело в том, что для брожения необходим НАДН, который в аэробных условиях окисляется. Это явление характерно и для высших растений и получило название эффекта Пастера.

В зависимости от конечного продукта различают разные типы брожения: спиртовое и молочнокислое. В присутствии кислорода может происходить уксуснокислое брожение.

6.2. Дыхание

Дыхание – это окислительный распад органических веществ при участии кислорода с образованием воды, углекислого газа и макроэргических соединений, которые используются клетками.

6.2.1. Субстраты дыхания

Дыхательный коэффициент – это объемное или молярное отношение СО2, выделившегося в процессе дыхания, к поглощенному за это же время О2. При нормальном доступе кислорода величина коэффициента зависит от субстрата дыхания. Если используются углеводы, то коэффициент равен 1. Если разложению подвергаются более окисленные соединения, например, органические кислоты, то поглощение кислорода уменьшается и коэффициент становится больше 1. Так, при использовании яблочной кислоты он равен 1,33. При окислении более восстановленных соединений (жиры, белки) требуется больше кислорода и коэффициент становится меньше 1. Например, при использовании жиров коэффициент равен 0,7.

При недостатке углеводов используются другие субстраты. Особенно это проявляется при прорастании семян, в которых запасными питательными веществами являются белки и жиры. Белки предварительно расщепляются до аминокислот. Затем аминокислоты окисляются до ацетилкоэнзима А и кетокислот, которые участвуют в цикле Кребса. Жиры гидролизуются липазой до глицерина и жирных кислот. Глицерин фосфорилируется и затем окисляется до 3-фосфоглицеринового альдегида, который включается в обмен углеводов. Жирные кислоты окисляются с образованием ацетилкоэнзима А.

6.2.2. Оксиредуктазы

Окисление дыхательных субстратов в ходе дыхания осуществляется с участием ферментов. Они называются оксиредуктазами, так как окисление одного вещества (донора электронов и протонов) сопряжено с восстановлением другого вещества (акцептора). Различают следующие группы ферментов.

Анаэробные или пиридиновые дегидрогеназы. Это двухкомпонентные ферменты, коферментом которых является НАД или НАДФ. Они передают электроны различным акцепторам, но не кислороду и отнимают два протона от субстрата. Один протон присоединяется к коферменту, а другой выделяется в среду. В зависимости от белковой части различают более 150 ферментов.

Аэробные или флавиновые дегидрогеназы. Они катализируют отнятие двух протонов от субстратов и передают электроны от анаэробных дегидрогеназ разным акцепторам (хиноны, цитохромы), в том числе и кислороду. Простетической группой служат производные витамина В2 – флавинадениндинуклеотид и флавинмононуклеотид.

Оксидазы. Эти ферменты передают электроны от субстрата только на кислород. При этом образуются вода (переносятся на О2 4 электрона), перекись водорода (Н2О2) или супероксидный анион кислорода (О – 2). Н2О2 и О – 2 весьма токсичны и поэтому быстро превращаются в воду и кислород под действием каталазы и супероксиддисмутазы, соответственно.

Оксигеназы. Они активируют кислород и катализируют его присоединение к различным органическим соединениям (аминокислоты, фенолы, ненасыщенные жирные кислоты, ксенобиотики – чужеродные токсичные вещества).

6.2.3. Гликолитический путь

Этот путь дыхательного обмена состоит из двух фаз – анаэробной (гликолиз) и аэробной (цикл Кребса).

6.2.3.1. Гликолиз

Реакции гликолиза идут в цитозоле и в хлоропластах. В результате гликолиза из одной молекулы глюкозы образуется 2 молекулы пировиноградной кислоты и 4 молекулы АТФ (рис. 6.1). Поскольку макроэргическая связь формируется прямо на окисляемом субстрате, такой процесс образования АТФ получил название субстратного фосфорилирования. Две молекулы АТФ покрывают расход на первоначальное активирование субстрата за счет фосфорилирования. Следовательно, накапливаются 2 молекулы АТФ. Кроме того, в ходе гликолиза восстанавливаются 2 молекулы НАД до НАДН, окисление которых в электронтранспортной цепи митохондрий приводит к синтезу 6 молекул АТФ. Итого образуются 8 молекул АТФ. Образовавшиеся 2 молекулы пировиноградной кислоты вступают в аэробную фазу дыхания.

word image 269

Рис. 6.1. Этапы гликолиза. Пунктиром обозначены обходные пути при обращении гликолиза (по В. В. Полевому).

6.2.3.2. Цикл ди- и трикарбоновых кислот (цикл Кребса)

Аэробная фаза дыхания локализована в митохондриях. Пировиноградная кислота окисляется до воды и углекислого газа в дыхательном цикле, получившем название цикла ди- и трикарбоновых кислот или цикла Кребса в честь английского биохимика Г. Кребса, описавшего этот путь (рис 6.2.). В этом цикле окисляется не сама пировиноградная кислота, а ее производное – ацетилкоэнзим А. Он образуется в результате окислительного декарбоксилирования пировиноградной кислоты. Процесс этот состоит из ряда реакций и катализируется сложной мультиферментной системой, состоящей из трех ферментов и пяти коферментов, и названной пируваткарбоксилазой.

word image 270

Рис. 6.2. Цикл Кребса (цикл ди- и трикарбоновых кислот).

1 – мультиэнзимный комплекс окислительного декарбоксилирования пировиноградной кислоты, 2 – цитратсинтаза, 3 – аконитатгидратаза, 4 – изоцитратдегидрогеназа, 5 – мультиэнзимный комплекс окислительного декарбоксилирования α-кетоглутаровой кислоты, 6 – сукцинатдегидрогеназа, 7 – фумаратгидратаза, 8 – малатдегидрогеназа (по В. В. Полевому).

При окислении одной молекулы пировиноградной кислоты образуется 3 молекулы НАДН, 1 молекула НАДФН и 1 молекула ФАДН2, при окислении которых в дыхательной электронтранспортной цепи синтезируется 14 молекул АТФ. Кроме того, 1 молекула АТФ образуется в результате субстратного фосфорилирования.

6.2.3.3. Глиоксилатный цикл

Он является модификацией цикла Кребса и локализован не в митохондриях, а в глиоксисомах. В этих органеллах образуется изолимонная кислота, как и в цикле Кребса. Затем она под действием изоцитратлиазы распадается на глиоксиловую и янтарную кислоты. Глиоксиловая кислота реагирует со второй молекулой ацетилкоэнзима А с образованием яблочной кислоты, которая затем окисляется до щавелевоуксусной кислоты. Янтарная кислота выходит из глиоксисомы и превращается в щавелевоуксусную кислоту (рис. 6.3).

Читайте также:  в каких странах закон защищает ребенка с момента зачатия

word image 271

Рис. 6.3. Схема глиоксилатного цикла (по В. В. Полевому).

В ходе глиоксилатного цикла утилизируются две молекулы ацетилкоэнзима А, образовавшегося при распаде запасных жиров, и образуется одна молекула НАДН.

6.2.4. Апотомический путь

Апотомический путь катаболизма гексоз (пентозофосфатный путь окисления глюкозы, гексозомонофосфатный цикл, пентозный шунт) происходит в цитоплазме и при отсутствии света в хлоропластах. Глюкоза фосфорилируется при участии гексокиназы до глюкозо-6-фосфата. Он окисляется глюкозо-6-фосфатдегидрогеназой. При этом образуются восстановленный НАДФН и лактон фосфоглюконовой кислоты. Лактон произвольно или при участии глюконолактозы гидролизуется до 6-фосфоглюконовой кислоты. Она под действием фосфоглюконатдегидрогеназы с коферментом НАДФ декарбоксилируется с образованием восстановленного НАДФН и пятиуглеродного сахара рибулозо-5-фосфата. Отсюда и название апотомический путь (апотомия – усекновение). Последующие реакции представляют цикл регенерации исходного субстрата – глюкозо-6-фосфата. Для прохождения полного цикла необходимы три молекулы глюкозо-6-фосфата. Как видно из рис. 6.4, из 6 молекул глюкозо-6-фосфата образуются 6 молекул СО2 и 6 молекул рибулозо-5-фосфата, из которых восстанавливается 5 молекул глюкозо-6-фосфата. При этом также образуется 12 молекул НАДФН, которые при окислении в дыхательной электронтранспортной цепи могут дать 36 молекул АТФ, что не уступает энергетическому выходу гликолитического пути. Продукты апотомического пути также участвуют в обмене веществ.

word image 272

Рис. 6.4. Пентозофосфатный цикл.

1 – глюкозо-6-фосфатдегидрогеназа, 2 – глюконолактоназа, 3 – фосфоглюканатдегидрогеназа (декарбоксилирующая), 4 – фосфопентоэпимераза, 5 – фосфопентоизомераза, 6 – транскетолаза, 7 – трансальдолаза, 8 – транскетолаза, 9 – триозофосфатизомераза, 10 – альдолаза, 11 – фосфатаза, 12 – гексозофосфатизомераза (по В. В. Полевому).

6.2.5. Прямое окисление сахаров

6.2.6. Дыхательная электронтранспортная цепь и окислительное фосфорилирование

Дыхательная электронтранспортная цепь состоит из переносчиков электронов, которые передают электроны от субстратов на кислород. Расположение переносчиков определяется величиной их окислительно-восстановительного потенциала. Цепь начинается с НАДН, имеющего потенциал –0,32 В, и кончается кислородом с потенциалом +0,82 В. Переносчики расположены по обеим сторонам внутренней мембраны митохондрий и пересекают ее. На внутренней стороне мембраны, расположенной к матриксу митохондрии, два протона и два электрона от НАДН переходят на флавинмононуклеотид и железосерные белки. Флавинмононуклеотид, получив протоны, восстанавливается и переносит их на внешнюю сторону мембраны, где отдает протоны в межмембранное пространство. Железосерные белки, находящиеся внутри мембраны, передают электроны от НАДН окисленному убихинону Q. Он, присоединив еще два протона, диффундирует в мембране к цитохромам. Цитохром b560 отдает два электрона убихинону, который, присоединив еще два протона из матрикса, передает два электрона цитохрому b556 и два электрона цитохрому c1, а протоны выходят в межмембранное пространство. На наружной стороне мембраны цитохром с, получив два электрона от цитохрома c1, передает их цитохрому а, который переносит их через мембрану на цитохром а3. Цитохром а3, связывая кислород, отдает ему электроны. Кислород присоединяет два протона с образованием воды (рис. 6.5).

word image 273

Рис. 6.5. Локализация электрон- и протонтранспортных реакций во внутренней мембране митохондрий (по В. В. Полевому).

Таким образом, транспорт электронов в дыхательной электронтранспортной цепи сопровождается трансмембранным переносом протонов. Возникающая разность потенциалов по обеим сторонам внутренней мембране митохондрий используется для синтеза АТФ (окислительное фосфорилирование), как это было показано в разделе 5.2.2. В результате прохождения двух электронов по цепи образуется 3 молекулы АТФ.

6.2.7. Влияние внешних и внутренних факторов на дыхание

Температура. Дыхание у некоторых растений идет и при температуре ниже 0 о С. Так, хвоя ели дышит при –25 о С. Интенсивность дыхания, как всякой ферментативной реакции, возрастает при повышении температуры до определенного предела (35-40 о С).

Кислород необходим для осуществления дыхания, так как он является конечным акцептором электронов в дыхательной электронтранспортной цепи. Увеличение содержания кислорода в воздухе до 8-10 % сопровождается повышением интенсивности дыхания. Дальнейшее увеличение концентрации кислорода существенно не влияет на дыхание. Однако в атмосфере чистого кислорода дыхание растений снижается, а при длительном его действии растение погибает. Гибель растения обусловлена усилением в клетках свободнорадикальных реакций и повреждением мембран вследствие окисления их липидов.

Углекислый газ является конечным продуктом дыхания. При высокой концентрации газа дыхание растений снижается по следующим причинам: 1) ингибируются дыхательные ферменты, 2) закрываются устьица, что препятствует доступу кислорода к клеткам.

Содержание воды. Водный дефицит растущих тканей увеличивает интенсивность дыхания из-за активации распада сложных углеводов (например, крахмала) на более простые, которые являются субстратом дыхания. Однако при этом нарушается сопряжение окисления и фосфорилирования. Дыхание в этом случае представляет бесполезную трату вещества. Иная закономерность характерна для органов, находящихся в состоянии покоя. Повышение содержания воды в семенах приводит к резкому увеличению интенсивности дыхания.

Свет. Трудно выявить влияние света на дыхание зеленых растений, так как одновременно с дыханием осуществляется противоположный процесс – фотосинтез. Освещенность, при которой интенсивность фотосинтеза равна интенсивности дыхания по уровню поглощенного и выделенного углекислого газа, называют компенсационным пунктом. Дыхание незеленых тканей активируется светом коротковолновой части спектра, так как максимумы поглощения флавинов и цитохромов расположены в области 380-600 нм.

Минеральные вещества. Такие элементы как фосфор, сера, железо, медь, марганец необходимы для дыхания, являясь составной частью ферментов или как фосфор промежуточным продуктом. При повышении концентрации солей в питательном растворе, на котором выращивают проростки, их дыхание активируется (эффект «солевого дыхания»).

Механическое повреждение усиливает дыхание из-за быстрого окисления фенольных и других соединений, которые выходят из поврежденных вакуолей и становятся доступными для оксидаз.

Изменение интенсивности дыхания в онтогенезе. У светолюбивых растений более высокая интенсивность дыхания по сравнению с теневыносливыми. Растения северных широт дышат более интенсивно, чем южные, особенно при пониженной температуре. Наиболее высока интенсивность дыхания у молодых активно растущих тканей и органов. После окончания роста дыхание листьев снижается до уровня, равного половине максимального и затем долго не меняется. При пожелтении листьев и в период, предшествующий полному созреванию плодов, у этих органов наблюдается активация синтеза этилена с последующим кратковременным усилением дыхания, которое называют климактерическим подъемом дыхания. Этилен увеличивает проницаемость мембран и гидролиз белков, что приводит к повышению содержания субстратов дыхания. Однако это дыхание не сопровождается образованием АТФ.

6.2.8. Взаимосвязь дыхания с другими процессами обмена

Для дыхания нужны в качестве субстратов углеводы, которые образуются в ходе фотосинтеза. Многие промежуточные продукты дыхания необходимы для биосинтеза важнейших соединений. Триозофосфат, превращаясь в глицерин, может использоваться при синтезе жиров. Пировиноградная, кетоглутаровая и щавелевоуксусная кислоты путем аминирования превращаются в аланин, глютаминовую и аспарагиновую аминокислоты. Они используются при синтезе белков. Янтарная кислота дает основу для формирования порфиринового ядра хлорофилла. Ацетилкоэнзим А является исходным материалом для образования жирных кислот. Пентозы, образующиеся в ходе апотомического пути окисления, входят в состав нуклеотидов, нуклеиновых кислот, никотинамидных и флавиновых коферментов. Эритрозо-4-фосфат, реагируя с фосфоэнолпировиноградной кислотой, образует шикимовую кислоту, которая необходима для образования ароматических аминокислот, например, триптофана. Триптофан участвует в синтезе белков и является предшественником фитогормона 3-индолилуксусной кислоты.

Источник

admin
Своими руками
Adblock
detector