образование протонов водорода в какой фазе

Термоядерный синтез на пальцах: от азов до практики

Меня уже несколько раз просили подробнее рассказать о термоядерном синтезе, термоядерных реакциях и вот этом вот всём. Тема действительно важная, ведь этот процесс является одним из ключевых источников энергии в современной Вселенной (благодаря нему, например, светит наше Солнце) и, возможно, в будущем станет почти неисчерпаемым источником энергии для Человечества, то есть для нас с вами.

68359 800

Самая знаменитая формула на свете

Если вы интересуетесь физикой, то, думаю, хоть раз в жизни видели эту формулу:

68839 original

Обычно её принято расшифровывать как формулу энергии, которой обладает каждый физический объект вне зависимости от прочих условий просто потому, что он имеет массу. То есть, даже тело, находящееся в состоянии покоя вне каких-либо полей и имеющее температуру, равную абсолютному нулю, всё равно обладает некоей энергией, то есть масса является «скрытой» энергией сама по себе. И эту энергию можно высвободить при определённых условиях.

Например, при столкновении частицы с её античастицей (скажем, электрона и позитрона) они взаимно уничтожаются с выделением энергии. То есть, их масса полностью переходит в энергию, и величина выделившейся энергии в точности определяется вышеупомянутой формулой, где под массой имеется в виду суммарная масса позитрона и электрона.

Но верно и обратное: не только масса способна превращаться в энергию, но и энергия способна превращаться в массу – или по крайней мере всё будет выглядеть так, что тело приобрело дополнительную массу в результате наделения его энергией.

Например, если мы разгоним частицу в ускорителе, то с точки зрения внешнего наблюдателя она начнёт вести себя так, как будто её масса выросла. Более яркий пример – фотоны, или кванты, т.е. мельчайшие порции, электромагнитного излучения. Согласно современным представлениям (с существенной точностью подтверждённым экспериментами) они вообще не имеют массы. Однако они обладают энергией, и поэтому в реальности ведут себя так, как будто масса у них есть.

Правда, в современной физике, дабы избежать путаницы, от термина «релятивистская масса» постепенно отказываются и в научной литературе его употреблять не принято. Это связано с некоторыми терминологическими тонкостями, способными привести к путанице в научных дискуссиях, однако нам, рассуждающим об этих вопросах весьма поверхностно и «на пальцах» подобное простительно. Поэтому мы можем говорить о полной эквивалентности энергии и массы: масса это энергия, а энергия это масса с точностью до множителя, равного квадрату скорости света.

И более того: в подавляющем большинстве случаев, когда мы говорим о массе, на самом деле мы имеем в виду выглядящую как массу энергию. Объясню, что я имею в виду.

Несуществующая масса

Окружающие нас тела состоят из молекул, молекулы состоят из атомов, а почти вся масса атомов сосредоточена в атомных ядрах. Атомные ядра, в свою очередь, состоят из протонов и нейтронов, то есть, получается, что масса окружающих нас тел в значительной степени определяется исключительно тем, какую массу имеют составляющие их протоны и нейтроны (с некоторыми оговорками, о которых речь пойдёт ниже).

69118 800

Протоны и нейтроны, в свою очередь, состоят из кварков: в каждом из них их по три. Так вот: если мы просуммируем массу кварков, составляющих, например, протон, то окажется, что их суммарная масса составляет лишь около 1/10 от массы протона. Откуда же берутся остальные 9/10, ведь внутри протона кроме кварков других массивных, т.е. имеющих массу, частиц нет?

Всё дело в том, что кварки внутри протона или нейтрона находятся в поле ядерного взаимодействия, которое называется сильным взаимодействием. Это одна из фундаментальных физических сил, известных нам на сегодняшний день, наряду с силой тяжести, электромагнитной силой и ещё одним видом взаимодействия, именуемого слабым: в повседневной жизни мы с ним не сталкиваемся, в нашем тексте о нём речи также не будет, так что пока отложим его в сторону.

Мы знаем, что тело, помещённое в некоторое поле, в результате получает определённую энергию. Например, камень, поднятый над землёй, начинает обладать потенциальной энергией, пропорциональной его массе, ускорению свободного падения (то есть характеристике гравитационного поля Земли) и высоте. Будет обладать потенциальной энергией и заряженное тело, помещённое в электрическое поле.

Точно также и кварки внутри протона и нейтрона обладают определённой (и весьма значительной!) энергией, обусловленной их участием в сильном взаимодействии друг с другом.

Но так как эта энергия как бы «скрыта» внутри протона или нейтрона, то «снаружи» мы её не видим – за исключением наблюдаемого увеличения массы протона или нейтрона в результате эквивалентности массы и энергии.

Зафиксируем: 9/10 массы протонов и электронов – это на самом деле «законсервированная» в них энергия. И эта энергия может быть высвобождена, что и происходит в результате процессов, называемых ядерными реакциями.

Пойдём дальше, и соединим протоны и нейтроны в более сложные структуры – атомные ядра. Например, одно из простейших сложных ядер – это ядро атома дейтерия, состоящее из одного протона и одного нейтрона. Дейтерий – старший брат обычного водорода, ядро которого по сути представляет собой одиночный протон.

70151 800

Так вот, масса протона составляет примерно 1,0073 т.н. атомной единицы массы, или а.е.м (1/12 массы атома углерода). Масса протона составляет 1,0087 а.е.м. Чему же будет равна масса ядра дейтерия? По идее, 1,0073 + 1,0087 = 2,016 а.е.м, не так ли?

А вот и не угадали. На самом деле масса ядра дейтерия – 2,0136 а.е.м, то есть примерно на 0,0024 меньше, чем должна быть.

То есть, сложив 2 и 2 (протон и нейтрон) мы получили не 4, как должны были бы, а 3 с чем-то. Мистика? Ничуть, если вспомнить, что на самом деле мы имеем дело не только и не столько с массой, сколько в виде «замаскированной под массу» энергией связи частиц внутри протона и нейтрона. А в физике ситуации, когда энергия связи сложной системы оказывается меньше энергии связи её элементов, нередки, и мы наблюдаем подобное чуть ли не каждый день.

Классическим примером является поведение мелких капель воды на оконном стекле или капель жира на поверхности супа. Вы, думаю, видели, как такие мелкие капельки сливаются в более крупные. В целом любые жидкие капли проявляют склонность к такому слиянию. Причина – более крупные капли обладают меньшей энергией, а точнее, меньшей энергией поверхностного натяжения.

69401 original

Действительно, энергия поверхностного натяжения пропорциональна площади поверхности. А площадь поверхности двух отдельных капель до слияния оказывается большей, чем площадь поверхности «суммарной» капли после их слияния.

Читайте также:  8900 какой оператор свердловская область

При этом надо помнить, что энергия поверхностного натяжения – это, в конечном счёте, энергия взаимодействия молекул внутри жидкости (которая, кстати, имеет электрическую природу, но об этом тоже в другой раз). И вот оказывается, что объект с большим числом частиц (большим объёмом, т.е. в данном случае большей массой) обладает меньшей энергией.

Куда же девается «лишняя» масса протонов и нейтронов, оказывающаяся «ненужной» в их новом связанном состоянии, характеризующимся более низкой энергией (массой)? А она высвобождается в виде чистой энергии – в основном тепловой (т.е. кинетической энергии движения частиц, например, тех же атомов и/или других частиц, получающихся в ходе ядерной реакции). При этом понятно, что количество высвобождающейся энергии можно определить всё по той самой формуле Эйнштейна про «эмцэ в квадртате», где в качестве массы будет стоять разница массы компонентов и массы получившейся из них системы: в нашем случае, протона, нейтрона и составленного из них ядра дейтерия.

В русскоязычной физической литературе эту разницу принято называть дефектом массы (имея в виду, что масса итогового ядра меньше суммы масс компонентов), в англоязычной же говорят об избытке массы (mass excess), имея в виду, что исходные компоненты по сумме тяжелее, чем получившееся из них ядро.

Зафиксируем: в результате соединения протонов и нейтронов в ядра часть их массы, обусловленной энергией связи составляющих их кварков оказывается «лишней» и высвобождается.

Больше – значит… легче?

Дефект массы сохраняется и для более сложных протон-нейтронных систем, и более того. Если мы будем «собирать» более сложные ядра не из отдельных протонов и нейтронов, а из других, более простых ядер (как это происходит на практике), то тоже будем наблюдать, что итоговое ядро будет иметь меньшую массу, чем сумма масс ядер, из которых мы его составили.

Например, если мы «склеим» три ядра атома гелия (точнее, гелия-4, в котором два протона и два нейтрона, масса 4,0026 а.е.м), то получим ядро атома углерода-12 (6 протонов, шесть нейтронов) с массой 12 а.е.м. ровно. Соответственно, при таком синтезе «лишней» окажется масса исходных ядер гелия в 0,007 а.е.м., которая выделится в виде энергии.

70903 original

Эта тенденция характера для всех лёгких атомов: чем больше количество протонов и нейтронов в атоме, тем меньшая масса приходится на каждый протон и нейтрон. А значит, при слиянии более простых атомов в более сложные будет выделяться энергия. Именно этот процесс называется ядерным (термоядерным) синтезом.

Стоит добавить, что принцип «чем больше, тем легче» работает только для лёгких атомов – а именно, для элементов, чьи порядковые номера в таблице Менделеева (т.е. количество протонов в ядре) меньше чем 56, т.е. меньше чем железа. При синтезе более тяжёлых ядер энергия уже не выделяется, а поглощается, так как результат реакции оказывается тяжелее компонентов.

А начиная со свинца (атомный номер 82, т.е. 82 протона в ядре) ядра «включается» обратный процесс: энергетически выгодным (то есть, приводящим к уменьшению общей энергии системы) является процесс распада сложного атома на более простые компоненты: например, висмут-209 (83 протона, 126 нейтронов) «выплёвывает» ядро атома гелия-4 (2 протона, 2 нейтрона), превращаясь в таллий-205 (81 протон, 124 нейтрона). При этом масса гелия-4 (4,0026 аем) и таллия-205 (204,9744 а.е.м) в сумме оказывается меньше массы исходного висмута-209 (208,9804 а.е.м) на 0,003 а.е.м. Избыточная масса при распаде тяжёлых элементов выделяется в виде энергии весьма похоже на то, как это происходит при синтезе лёгких.

71011 800

Последний вариант превращения массы в энергию мы уже освоили и используем в атомных реакторах, радиоизотопных электрогенераторах и других устройствах. Однако эта технология обладает рядом недостатков: для реакторов необходимо достаточно редкое и дорогое топливо, запасы которого к тому же ограничены; кроме того, побочным продуктом реакции являются высокорадиоактивные отходы, обращение с которыми представляет известную трудность.

Ядерный синтез перспективнее, однако освоить его сложнее: если тяжёлые радиоактивные ядра в принципе распадаются сами по себе, и нам остаётся лишь собирать выделившуюся энергию. Но для того, чтобы заставить склеиться лёгкие ядра, надо приложить немало сложностей.

Вопреки кулону

Вернёмся к нашему примеру с каплями на стекле (или, скажем, на поверхности супа): мы видим, что они достаточно легко сливаются без всяких усилий с нашей стороны, так как природа склонна переводить системы в состояние с минимальной энергией. Но если мы придадим нашим каплям некий одноимённый электрический заряд, то мы увидим, что сливаться капли перестали. Причина понятна: сила электростатического отталкивания препятствует их достаточному сближению.

Так вот: наши атомные «капельки»-ядра как раз имеют положительный заряд, так как состоят из нейтральных нейтронов и положительно заряженных протонов. В результате силы электростатического отталкивания также препятствуют их слиянию.

Физики говорят, что электрические силы создают между атомами потенциальный барьер, который ещё называют кулоновским. Для того, чтобы атомы могли преодолеть этот барьер и столкнуться, запустив процесс ядерного синтеза, они, во-первых, должны находиться достаточно близко друг к другу, а во-вторых иметь достаточную скорость. На языке параметров вещества это означает, что для запуска термоядерного синтеза вещество должно находиться под большим давлением и иметь высокую температуру.

Причём высокую – это мягко сказано: речь идёт о миллионах и даже десятках миллионов градусов. Для сравнения, самый жаростойкий материал, сегодня известный человечеству, а именно особый вид карбонитрида гафния (Hf-CN) имеет температуру плавления порядка 4000 градусов. Увы, это примерно в две тысячи раз меньше, чем нужно.

В принципе, мы уже умеем запускать термоядерные реакции в земных условиях – собственно, именно это происходит в термоядерных бомбах. Но там экстремальные давления и температуры возникают в эпицентре ядерного взрыва: огромная энергия выделяется за доли секунды, что отлично подходит для произведения чудовищных разрушений.

71336 800

Но мирно собрать и использовать выделившуюся таким образом энергию сложновато: в термоядерном реакторе, в отличие от бомбы, энергия должна выделяться постепенно, небольшими порциями, то есть, быть устойчивой.

Устойчивые термоядерные реакции вполне прекрасно идут, например, в недрах звёзд, в том числе нашего Солнца – именно благодаря выделяющейся в результате этих реакций энергии оно и светит. Однако там экстремальные условия (температура и давление) возникли в результате гравитационного сжатия колоссальных масс вещества. Гравитация системы также обеспечивает устойчивость реакции.

Солнечная топка

В Солнце основым видом термоядерной реакции является многоступенчатое превращение водорода в гелий.

Сначала два атома водорода – по сути, обычные протоны – сливаются в нестабильную систему под названием дипротон, т.е. пару протонов, он же изотоп гелий-2. Этот изотоп крайне нестабилен и распадается в среднем через миллиардную долю секунды. Но иногда за это время один из протонов может спонтанно превратиться в нейтрон, и тогда дипротон превратится в стабильный тяжёлый водород – дейтерий (1 протон, 1 нейтрон).

Читайте также:  в каких районах ленинградской области обнаружен коронавирус на сегодняшний день

Впоследствии дейтерий поглощает ещё один протон, превращаясь в стабильный изотоп гелий-3 (2 протона, 1 нейтрон). Затем два ядра гелия-3 сталкиваются, в результате чего образуется «нормальный» гелий-4 (два протона, два нейтрона), а два «лишних» протона улетают прочь.

70106 original

На каждом из этих этапов выделяется энергия, благодаря которой, повторимся, и светит Солнце.

Однако на Земле осуществить подобный цикл невозможно по ряду причин.

Превращение дипротона в дейтерий – процесс вероятностный, причём вероятность того, что это случится, на самом деле невелика с учётом малого времени жизни дипротона. Для того, чтобы такая реакция шла и давала выход энергии, нужны колоссальные массы вещества. Но это полбеды, можно было бы работать, скажем, с уже готовым дейтерием (он в достаточных количествах содержится в любом количестве водорода, например, того, который можно получить из простой воды). К сожалению, это не единственная сложность.

71641 original

Например, можно вместо гравитации использовать для обжатия и нагрева термоядерного топлива электромагнитные поля.

Например, можно поместить топливо в специальную конструкцию в виде полого тора (проще говоря, бублика) покрытую проводящей обмоткой. Если через эту обмотку пропускать электрический ток, то возникнет магнитное поле, которое сдавливать плазму, обжимая её от краёв канала к центру и удерживая в своеобразной магнитной ловушке без непосредственного контакта материалов реактора с раскалённым веществом.

В результате – в теории – можно в земных условиях реализовать температуры и давления, характерные для звёздных недр и запустить термоядерный синтез. Именно такие конструкции «бубликовидных» реакторов сегодня являются мейнстримом термоядерных исследований. Хотя существуют и другие перспективные схемы компоновки реакторов.

74401 800

На практике же реализовать всё это достаточно сложно, ведь находящееся в столь экстремальном состоянии вещество обладает особенностями поведения, в которых мы пока что недостаточно хорошо разбираемся. И сейчас тысячи учёных по всему миру усиленно работают над тем, чтобы приручить электромагнитные поля и раскалённое вещество, заставив их подчиняться нашей воле.

На пути к искусственному Солнцу

В настоящий момент мы уже научились инициировать «медленную» реакцию в смеси вышеупомянутого дейтерия (1 протон, 1 нейтрон) с тритием (1 протон, 2 нейтрона, т.н. сверхтяжёлый водород).

72631 800

В результате такой реакции образуется ядро гелия (2 протона, 2 нейтрона). Но в исходных ядрах два протона и три нейтрона, то есть, образуется «лишний» нейтрон, который улетает прочь. А это плохо.

Во-первых, с собой этот нейтрон уносит значительную (80 %) часть энергии, вырабатываемой при реакции синтеза, что сильно уменьшает её КПД.

Во-вторых, нейтронный поток негативно влияет на конструктивные свойства сооружений реактора, разрушая их. То есть, необходимо придумать и использовать какие-то «нейтронно-устойчивые» материалы.

Наконец, в-третьих, тритий очень дорог: его стоимость – 30 тысяч долларов за грамм. При сжигании в реакторе 1 грамма дейтериево-тритиевой смеси выделится энергия, эквивалентная сжиганию примерно 20 тонн угля стоимостью примерно в 2 тысячи долларов. И это без учёта того факта, что в дейтериево-тритиевой схеме мы сможем собрать лишь небольшую часть выделившейся энергии. Поэтому дейтериево-тритиевое топливо вряд ли пригодно для использования в качестве практического источника энергии, и работающие на нём реакторы имеют прежде всего научное значение: в их можно изучить и освоить технологии «управления» раскалённым газом (плазмой), полноценное овладение которыми откроет путь к использованию других видов топлива и реакций.

Например, если бы удалось создать условия, в которых сможет протекать более требовательная к ним реакция между атомами только дейтерия (без трития), то это уже вывело бы перспективы термоядерной энергетики на совершенно новый уровень. Увы, пока мы их запускать не умеем.

Ещё более интересны так называемые безнейтронные схемы: реакции, не приводящие к возникновению «паразитного» нейтронного потока. Например, использование из дейтерия и гелия-3 (2 протона, 1 нейтрон), дающие на выходе «полноценный» гелий-4 (2 протона, 2 нейтрона) и «лишний» протон.

К сожалению, гелий-3 на Земле практически не встречается, и его надо либо получать искусственно (возможно, но дорого, хотя и дешевле трития), либо можно привезти с Луны, где его по идее много. Какой путь окажется дешевле –пока неясно (космические технологии тоже не стоят на месте!), но сначала нужно научиться нормально работать с раскалённой плазмой.

Именно для этого, к слову, строят крупнейший в истории термоядерный реактор ITR во Франции: в строительстве принимают участие Россия, Казахстан, США, ЕС, Китай, Индия, Япония и Южная Корея – уже сам состав участников свидетельствует о масштабе проекта. ITR вряд ли будет давать «коммерческую» энергию, но позволит отработать все необходимые для этого технологии для применения в будущем.

73218 800

Существует и альтернативный подход: так называемые импульсные термоядерные реакторы, в которых не предполагается поддерживать постоянные условия солнечного ядра, а создавать их на краткое время – достаточное, впрочем, для того, чтобы какая-то часть термоядерного топлива успела прореагировать. В таких реакторах небольшие объёмы топлива быстро «сплющиваются» мощными лазерами или потоками заряженных частиц высоких энергий.

73563 original

Импульсные реакторы являются конкуретами проектов вроде ITR – какая из конструкций первой «придёт к финишу» покажет время.

Источник

Образование протонов водорода в какой фазе

Все перечисленные ниже понятия и процессы, кроме двух, используют для описания световой стадии фотосинтеза в клетке растения. Определите два понятия, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны

1) перемещение электронов

4) восстановление углерода водородом

СВЕТОВАЯ ФАЗА ФОТОСИНТЕЗА (происходит на свету на мембранах тилокоидов):

1) возбуждение хлорофилла (a и b) и перемещение электронов;

2) фотолиз (разложение) молекул воды и образование (выделение) кислорода и водорода (протонов);

3) синтез молекул АТФ;

4) соединение водорода со специальным переносчиком НАДФ+ и образование НАДФ∙H.

ТЕМНОВАЯ ФАЗА ФОТОСИНТЕЗА (свет не нужен, происходит в строме хлоропласта):

1) в строму поступают НАДФ∙H, АТФ и CO2;

2) связывание CO2 с рибулозодифосфатом (C5-углевод) – фиксация неорганического углерода (C6-углевод);

3) C6-углевод распадается на 2 триозы (C3-углевод);

4) присоединение к триозам фосфатов (от АТФ) – активирование триоз (синтез триозофосфатов);

5) восстановление триоз (за счет протонов НАДФ∙H);

6) синтез глюкозы (соединение двух триоз);

7) синтез крахмала из глюкозы.

(1) перемещение электронов — световая фаза фотосинтеза;

(2) фотолиз воды — световая фаза фотосинтеза;

(3) окисление НАДФ·Н — признак выпадает (характерен для темновой фазы фотосинтеза);

(4) восстановление углерода водородом — признак выпадает (характерен для темновой фазы фотосинтеза);

(5) фотофосфорилирование — световая фаза фотосинтеза (процесс синтеза АТФ из АДФ за счёт энергии света).

Источник

Световая и темновая фазы фотосинтеза

Урок 13. Биология. Сложные вопросы. Ботаника

20210413 vu tg sbscrb2

13

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

20210706 unblock slide1

20210706 unblock slide2

20210706 unblock slide3

Конспект урока «Световая и темновая фазы фотосинтеза»

Процесс фотосинтеза представляет собой цепь окислительно-восстановительных реакций, где происходит восстановление углекислого газа до органических веществ. Всю совокупность фотосинтетических реакций делят на две фазы – световую и темновую. Световая фаза осуществляется на мембранах тилакоидов и только при наличии света. Реакции темновой фазы протекают в строме хлоропластов и не требуют света, однако для их прохождения необходимы продукты световой фазы. Поэтому темновая фаза идёт практически со световой.

Читайте также:  на какую высоту устанавливают водонагреватель

image001

Для световой фазы характерно то, что энергия солнечного света, поглощённая хлорофиллами, преобразуется сначала в электрохимическую, а затем в энергию макроэргических связей АТФ (это ковалентные связи, которые гидролизуются с выделением большого количества энергии).

Световая фаза фотосинтеза разделяется на фотофизическую и фотохимическую фазы. В фотофизической происходит поглощение квантов света молекулами хлорофиллов. В фотохимической фазе обе фотосистемы работают согласованно.

Рассмотрим подробно процессы, которые протекают в световой фазе.

1. Пигменты фотосистемы I и фотосистемы II поглощают свет разной длины волны. Полученная энергия передаётся в реакционные центры на молекулы хлорофиллов (молекулы-ловушки). Важнейшими из хлорофиллов реакционного центра являются хлорофиллы П700 в фотосистеме I и П680 в фотосистеме II. Они поглощают свет с длиной волны 700 и 680 нм соответственно. Молекулы хлорофиллов переходят в возбуждённое состояние и отдают электроны переносчикам.

image002

image003

Получается, что фотосистема I восстанавливается за счёт электронов из фотосистемы II, которая, в свою очередь, получает электроны за счёт фотолиза воды:

Фотолиз воды осуществляется благодаря наличию в фотосистеме II ферментного комплекса, который расщепляет молекулы воды с образованием кислорода, электронов и протонов водорода. Протоны водорода накапливаются внутри тилакоида. Кислород, который образуется при фотолизе воды, выделяется из хлоропласта в цитоплазму клетки, а затем через устьица в окружающую среду.

2. Таким образом, по разные стороны мембраны накапливаются протоны и электроны, которые, соответственно, имеют положительный и отрицательный заряды. Это ведёт к возникновению электро-химического потенциала на мембране тилакоида. В мембране тилакоида также содержится фермент АТФ-синтетаза. Когда концентрация протонов достигает определённого уровня (200 мВ), они устремляются в строму хлоропласта, проходя через специальные каналы АТФ-синтетазы, то есть начинает работать протонная помпа. При этом АТФ-синтетаза использует энергию движения протонов для синтеза АТФ. На выходе из протонного канала создаётся высокий уровень энергии, которая используется для фосфорилирования молекул АДФ, имеющихся в матриксе хлоропластов.

3. На внешней стороне тилакоида происходит восстановление НАДФ окисленного за счёт присоединения к нему электронов и протонов. НАДФ – никотинамидадениндинуклеотидфосфат – это переносчик водорода в процессе фотосинтеза.

Таким образом, в ходе световой фазы энергия света поглощается и преобразуется в энергию макроэргических связей АТФ, происходит расщепление воды с выделением кислорода и накопление атомов водорода (в форме НАДФ восстановленного).

image005

Продуктами световой фазы фотосинтеза являются АТФ, восстановленный НАДФ и кислород. Кислород – побочный продукт фотосинтеза, он выделяется в окружающую среду. Весь кислород воздуха на нашей планете был образован в результате фотосинтетической деятельности зелёных растений.

Далее начинается темновая фаза фотосинтеза, которая протекает в строме хлоропласта. Поскольку для прохождения реакций данной фазы не нужен свет, её назвали темновой. В ней используются продукты световой фазы, а именно АТФ и НАДФ восстановленный, поэтому реакции темновой фазы происходят почти одновременно с реакциями световой фазы.

image006

Из окружающей среды через устьица в хлоропласты поступает углекислый газ, и происходит его восстановление до органических веществ, в химических связях которых запасена энергия, первоначально полученная при возбуждении электрона хлорофилла квантом света.

Углекислый газ способен реагировать с пятиуглеродным соединением рибулёзо-1,5-бифосфатом, которое образуется в строме в результате фосфорилирования с помощью АТФ молекул рибулозо-5-фосфата. Фермент присоединяет углекислый газ к рибулёзо-1,5-бифосфату, и полученный в результате этого шестиуглеродный промежуточный продукт быстро распадается на две молекулы 3-фосфоглицериновой кислоты. Затем происходит цикл реакций, который называется циклом Кальвина (или С3-путь). Через ряд промежуточных продуктов фосфоглицериновая кислота преобразуется в глюкозу.

Восстановление углекислого газа – это сложный многоступенчатый процесс, который можно выразить общим уравнением:

6СО2 + 12НАДФimage004Н+Н + + 18АТФ → С6Н12О6 + 12НАДФ + + 18АДФ + 18Н3РО4

Из записанного уравнения видно, что для синтеза одной молекулы глюкозы необходимо окислить 12 молекул НАДФ восстановленного, которые служат источником атомов водорода, и 18 молекул АТФ, которые служат источником энергии для синтеза глюкозы. Таким образом, в темновой фазе фотосинтеза энергия макроэргических связей АТФ преобразуется в энергию химических связей органических веществ.

Если объединить процессы, протекающие в обеих фазах, исключив промежуточные стадии и вещества, можно получить суммарное уравнение процесса фотосинтеза:

Фотосинтез происходит только на свету. Проведём опыт, который это доказывает.

Возьмём две ёмкости и опустим в них растения. Наполним ёмкости углекислым газом и плотно закроем, чтобы не проникал воздух. Первую ёмкость выставим на яркий свет, вторую оставим в темноте. Через сутки откроем ёмкости, опустим в них горящие лучинки. В первой – лучинка не гаснет, а продолжа­ет ярко гореть. Значит, в этой ёмкости появился кислород, поддерживающий горение. Зелёные листья растения поглотили значительную часть углекислого газа и выделили неко­торое количество кислорода. Опущенная во вторую ёмкость горящая лучинка потух­нет. Следовательно, зелёные растения выделяют кисло­род только на свету.

На скорость фотосинтеза оказывают влияние различные факторы окружающей среды: интенсивность падающего света, наличие влаги и минеральных веществ, температура окружающей среды и концентрация углекислого газа.

Проведём несложный опыт. Возьмём два одинаковых комнатных растения. Одно из них поставим туда, где оно будет освещаться ярким солнечным светом. Второе растение поставим в тёмное место, куда солнечный свет вообще не проникает. Через неделю срежем с каждого растения по одному листу. Опустим листья сначала в кипящую воду, а затем на несколько минут в горячий спирт, пока листья не обесцветятся. Промоем обесцвеченные листья, расправим их и обработаем слабым раствором йода. Известно, что от йода синеет крахмал. Тот лист, который был на свету, посинел. Второй же лист, на который не попадал солнечный свет, остался бесцветным. Опыт показывает, что только в том листе, который был освещён солнцем, образовался крахмал.

На самом деле первоначально под действием света в листьях образуется глюкоза. Но она быстро превращается в крахмал, который накапливается в листьях. В темноте крахмал вновь превращается в глюкозу, которая по проводящим тканям оттекает от листьев к другим органам растений.

Уникальность и биологическое значение фотосинтеза определяются тем, что жизнь на нашей планете всем своим существованием обязана этому процессу. Фотосинтез является основным источником питательных веществ для живых организмов, а также единственным поставщиком свободного кислорода на Земле. Из кислорода сформировался и поддерживается озоновый слой (часть стратосферы на высоте от 20 до 25 километров, с наибольшим содержанием озона). Озоновый слой защищает живые организмы от губительного воздействия ультрафиолетового излучения. Кроме того, благодаря фотосинтезу поддерживается относительно постоянное содержание углекислого газа в атмосфере.

Источник

admin
Своими руками
Adblock
detector